
24  MatheMatics teaching in the Middle school  ●  Vol. 15, No. 1, August 2009

t students explore generalizing patterns 
to describe functional relationships 
(Blanton and Kaput 2005).

Principles and Standards for School 
Mathematics (NCTM 2000) states 
that focusing on understanding pat-
terns, relations, and functions is a 
primary goal of algebra instruction. 
Relationships that are inherent in 
numerical and geometric (visual) pat-
terns can be represented using words, 
tables, graphs, and symbols. Students 
can make and explain generalizations 
about patterns and use those relation-
ships to make predictions. 

Driscoll (1999) highlights the im-
portance of building rules to represent 
functions: “Critical to algebraic think-
ing is the capacity to recognize pat-
terns and reorganize data to represent 
situations in which input is related 
to output by well-defi ned functional 
rules” (p. 2). Working with patterns 
involves exploring and expressing 
regularities. 

In the primary grades, students 
explore patterns that repeat. In the 
middle-grades curriculum, patterns 
that grow have a larger presence. The 
real power in using the latter form of 
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students’ 
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There is growing recognition that 
learning to reason algebraically is an 
essential component of middle-grades 
mathematics education. But what 
does it mean to reason algebraically? 
Blanton and Kaput (2005) describe it 
as a “process in which students gen-
eralize mathematical ideas from a set 
of particular instances, establish those 
generalizations through the discourse 
of argumentation, and express them 
in increasingly formal and age-
appropriate ways” (p. 413). Algebraic 
reasoning takes various forms, includ-
ing functional thinking in which 
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Fig. 1 Fig. 10

Fig. 2 Fig. 11

 

 

Fig. 3 Fig. 12

Fig. 4 Fig. 13

Fig. 5 Fig. 14

Fig. 6 Fig. 15

Fig. 7 Fig. 16 

How many smiley faces are exposed?

Fig. 8

How many people fi t around the table?

Fig. 17

Fig. 9 Fig. 18

Figs. 1−18 Examples of geometric pattern tasks
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these tasks is found in relating num-
bers to growing pattern tasks that 
are visual (e.g., made with geometric 
fi gures) by asking students to discover 
the regularities involved and develop 
generalizations for function rules.

In our investigations of growing 
pattern tasks, we have explored the 
development of a framework that can 
be used to characterize the nature 
and complexity of such tasks. We are 
particularly interested in visual grow-
ing patterns, referred to as geometric 
patterns (NCTM 2000) or pictorial 
growth patterns (Billings, Tiedt, and 
Slater 2007/2008), which involve the 
use of fi gural objects (Rivera 2007).

The term fi gural objects refers to 
items that possess both spatial proper-
ties and conceptual qualities (Rivera 
2007, p. 69). Figural means that the 
objects (or pictures of the same) 
“possess attributes or exhibit relation-
ships among one another” (Rivera and 
Becker 2005, p. 199). 

In exploring geometric patterns (see 
fi gs. 1−18), the focus is on the use of 
inductive reasoning to analyze se-
quences of fi gural and numerical cues, 
with numerical cues following a certain 
numerical order (Rivera and Becker 
2005). In particular, we emphasize 
the use of fi gural reasoning during 
the process of inductive reasoning. “A 
numerical mode of inductive reasoning 
uses algebraic concepts and operations 
(such as fi nite differences), whereas 
a fi gural mode relies on relationships 
that could be drawn visually from a 
given set of particular instances” 
(Rivera and Becker 2005, p. 199). 

When students use fi gural reason-
ing, they are able to make sense of 
patterns, such as those in fi gure 1, by 
paying attention to visual cues that 
can be organized and translated to 
numeric sequences. These cues explain 
and support pattern generalization for 
function rules.

As we explored the kinds of geo-
metric pattern tasks that lend them-

selves to fi gural reasoning, we found 
several resources that provide a variety 
of different tasks. In many instances, 
they also discuss ways in which these 
tasks might be analyzed and how 
they might lead to pattern generaliza-
tions for function rules. The analyses 
varied in their levels of abstraction 
and in how students were supported 
in their development of function rules. 
Although we did not fi nd any discus-
sion of a framework for characterizing 
the pattern-task complexity, we did 
fi nd several examples that could be 
incorporated into a well-developed 
problem-solving process (Lee and 
Freiman 2006). 

In this article, we will address 
several issues: 

• First, we will look at a problem-
solving process that supports the 
use of fi gural reasoning to explore 
and interpret geometric pattern 
tasks and generalize function rules. 

• Second, we will discuss a frame-
work for characterizing the 
complexities of geometric pattern 

tasks that might be used as applied 
contexts for fi gural reasoning. 

• Third, we will summarize other 
considerations about how the long-
term and extended use of geomet-
ric pattern tasks contributes to an 
overall development of students’ 
functional thinking; such consid-
erations are also important when 
developing a framework.

a PRoBleM-solVing PRocess 
that PRoMotes FigURal 
Reasoning
Friel, Rachlin, and Doyle (2001) 
provide guidelines for generating and 
describing growing sequences that are 
introduced through a variety of con-
texts that frequently involve geometric 
pattern tasks. One guideline that 
highlights fi gural reasoning involves 
“describing the shapes succinctly with 
words in such a way that someone 
who has not seen them will be able to 
duplicate the sequence” (p. 7).

Although there is an emphasis on 
fi gural reasoning, in most instances, 
the focus of analysis moves very 

Pedagogy for 
approaching these tasks
In thinking about the framework, an additional component is 
the pedagogy that may be used to interact with students as 
they solve such problems. One common strategy asks students to begin with 
the fi rst three or four stages in the sequence and use the three phases in 
table 1 to guide investigation. Another strategy (Friel et al. 2009) involves 
providing only a third or fourth stage in a geometric pattern sequence and 
asking students to draw the missing early stages in the sequence to promote 
backward and forward thinking about possible relationships in the pattern. 

An interesting variation of a starting-point task is to use a fi gure in a 
sequence that does not have an obvious designated place in a sequence. 
Its structure can be analyzed fi gurally without needing to reference a stage 
number. Boaler and Humphreys (2005) provide an excellent model using 
both text and video for a 10 × 10 image from the sequence in fi gure 10. 
See also a discussion that addresses the use of this task across grade levels, 
indicating the various ways that different grade levels of students might ap-
proach solutions (Ferrini-Mundy, Lappan, and Phillips 1997).
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Phase 1: Reasoning fi gurally 
using the visual characteristics 
of the geometric pattern task

1. How many different patterns can you see in this drawing? (See fi g. 17.)

    a. How would you draw the next stage?
    b. How would you draw the 10th stage?
    c. How would you draw the 58th stage?
    d. How would you tell someone how to draw any stage at all?

2.  I have a box of 25 smiley faces. How big a fi gure could I make? Would I have 
some smiley faces left over?

Phase 2: Developing numerical 
relationships to generalize a 
function

3.  How many smiley faces does it take to make the 10th stage, the 58th stage, 
or the 100th stage? 

4. How many smiley faces does it take to make the nth stage? 

5. Which of the expressions for the nth stage is a “right” one?

Phase 3: Extending pattern 
analysis 

6. Which stage has exactly 100 smiley faces in it? What about 50 smiley faces?
7. Can you create a pattern problem for the class? 

Fig. a This strategy focuses on the hori-
zontal row of smiley faces with a 
column up from the middle. Draw-
ing the 43rd stage would involve 
a horizontal row of two groups of 
43 smiley faces plus 1 more and a 
stack 43 vertical smiley faces.

Fig. B This strategy involves using the 
previous fi gure and adding 1 more 
to each of three “arms.” To fi nd the 
43rd stage would require knowing 
what the 42nd fi gure looked like 
(how many smiley faces) and then 
adding 3 more. 

Fig. c This strategy highlights multiple 
sets of the same number of smi-
ley faces. In the 43rd stage, there 
would be 3 sets of 43 smiley faces, 
with 1 smiley face in the middle. 

table 1 These phases of the problem-solving process help in analyzing geometric pattern tasks (adapted from Lee and Freiman 2006).

table 2 Three different fi gural reasoning strategies used to describe a single geometric pattern
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quickly to how-many questions. For 
example, consider the geometric pat-
tern in fi gure 17. Typical how-many 
questions include the following: 

• How many smiley faces does it 
take to make the 10th stage?

• How many smiley faces does it 
take to make the 43rd stage?

• How many smiley faces does it 
take to make the 100th stage? 

• How many smiley faces does it 
take to make the nth stage?

Often, steps that focus on the fi gural 
reasoning component of the task are 
neglected.

Lee and Freiman (2006) propose a 
set of questions to guide the problem-
solving process that serves to highlight 
the visual reasoning phase, the corner-
stone of fi gural reasoning. For example, 
for the smiley-face context described 
above, see the questions in table 1. 
If we focus on phase 1, students may 
visualize this geometric pattern in sev-
eral different ways (Lee and Freiman 
2006). Three possible strategies and 
their usefulness in promoting general-
izations are discussed in table 2.

Students can talk through their 
fi gural-reasoning strategies and 
develop rules to match their patterns 
of thinking. After they have mastered 

these items, they can be introduced to 
the use of tables to record the numeri-
cal summaries. Visual strategies can 
be translated to numerical summaries, 
preserving a record of the thinking 
process, by using three-column tables 
(e.g., Lawrence and Hennessy 2002; 
Wickett, Kharas, and Burns 2002).  
Three such tables are presented in 
table 3, one for each of these strate-
gies discussed in table 2. 

When students problem solve and 
use a table with geometric pattern 
tasks, they are taking the fi rst step 
into the world of functional thinking. 

Next, we look at the characteristics 
of geometric pattern tasks that impact 

Figure a

stage Reasoning total smiley Faces explanation

1
2
3
4
.
.
.
n

(1(h) + 1(h) + 1) + 1(v)
(2(h) + 2(h) + 1) + 2(v)
(3(h) + 3(h) + 1) + 3(v)
(4(h) + 4(h) + 1) + 4(v)

.

.

.
(n (h) + n (h) + 1) + n (v)

4
7

10
13
.
.
.

(n + n + 1) + n

The numerical statement of the strategy mir-
rors the student’s thinking. This organization 
highlights what changes and what is constant. 
It makes an explicit connection between the 
stage number (input) and the total smiley 
faces (output).

Figure B

1
2
3
4
.
.
.
n

1 + 3
4 + 3
7 + 3

10 + 3
.

? + 3
.
.

4
7

10
13
.
?
.
.

Students may notice by this point that this 
pattern perception does not translate to nu-
merical statements that make relationships as 
clear as with the other two strategies.

Figure c

1
2
3
4
.
.
.
n

1 + 1 + 1 + 1
2 + 2 + 2 + 1
3 + 3 + 3 + 1
4 + 4 + 4 + 1

.

.

.
n + n + n + 1

4
7

10
13
.
.
.

3n + 1

This reasoning leads to a function rule, again, 
that connects the input and the output. Stu-
dents can compare the expression for fi gure A 
with that for fi gure C and consider the ques-
tion, “Which of the expressions for the nth 
shape is a ‘right’ one?” Students can look back 
to the reasoning that produced each to deter-
mine if the expressions are equivalent. 

(Note: h refers to horizontal parts, and v refers to vertical parts of the fi gure structure.)

table 3 Numerical summaries of fi gural reasoning strategies
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complexity. Any old pattern will not 
do; it is worth our time to think about 
when and how to introduce differ-
ent types of patterns, while promot-
ing functional thinking developed 
through fi gural reasoning.

analYZing PatteRn 
coMPleXitY
Before you read on, take another look 
at the eighteen geometric patterns in 
fi gures 1−18 on p. 26. Think about 
sorting the fi gures into two groups:  
simple patterns and more complex 
patterns. 

• Which patterns would you con-
sider simple? Why?

• Which patterns would you con-
sider complex? Why?

• What are the similarities and dif-
ferences among the patterns?

• How might these similarities 
and differences be highlighted to 
promote different fi gural reasoning 
strategies?

Although a teacher can ask various 
questions about any of these geo-
metric patterns, consider queries that 
will help focus on fi gural reasoning 
strategies. As you look at each item, 
what different patterns do you see? 
How would you draw or build the 

next stage? The 10th stage? The 58th 
stage? How would you tell someone 
how to draw any stage in this pattern 
group? In our analysis of these and 
many other geometric patterns, in this 
phase of analysis we have identifi ed 
several complexities that emerge and 
that deserve articulation. 

The most basic geometric pattern 
refl ects a linear, direct variation rela-
tionship, as shown in fi gures 1 and 2, 
in which the total number of blocks is 
a multiple of the stage number. Note 
that we refer to each fi gure in a se-
quence as a stage number. Other terms, 
such as fi gure number, pattern number, 
or picture number, may also be used. 
These numbers designate the order 
and sequence of the fi gures within a 
growing pattern and are the input to a 
function rule.

Once you move to phase 2 of the 
problem-solving process, calculating 
the total number of blocks involves a 
single, multiplicative step when relat-
ing the pattern number and the num-
ber of blocks. Adding a constant to a 
geometric pattern usually increases its 
complexity. Notice the difference be-
tween the patterns in fi gures 1 and 3. 
One additional tile is in each stage of 
the pattern in fi gure 3. This difference 
may seem minor, but it increases the 
complexity of the pattern by making 

the calculation of the total number 
of tiles (phase 2) a two-step process 
involving multiplication (by 1) and 
addition (plus 2). Thus, the functional 
relationship of the pattern in fi gure 3
becomes T = n + 1, in which T is the 
total number of blocks, and n is the 
stage number. 

For students who are just begin-
ning to work with geometric patterns, 
identifying a constant may not be 
obvious. Figural-reasoning strategies 
can be prompted in different ways.

For example, the constant term can 
be represented using a different color. 
In fi gures 3, 4, and 7, the constant 
(plus 1) is shown with a different-
colored tile in each pattern sequence. 
Constants can also be shown using 
different shapes; the constants in 
fi gures 5 and 6 (again, plus 1) are 
represented by a triangle at the top of 
the tree and a single center hexagon, 
respectively.

What makes the geometric 
patterns in fi gures 5 and 11 more 
complex, however, is that two shapes 
grow in each successive stage. The tree 
in fi gure 5 increases by both 1 square 
and 1 trapezoid in each stage. Stu-
dents use fi gural reasoning when they 
observe these relationships. When 
students transition to phase 2 of the 
process, since there is n number of 
squares and n number of trapezoids, 
one way they can justify the functional 
relationship is through the rule 
T = n + n + 1, with the constant of 1 
representing the triangle at the top. 

The pattern in fi gure 11 is more 
problematic. The number of hexagons 
is clear; this value corresponds to the 
stage number. However, although a 
student might expect the number of 
squares to grow by 6 in each stage 
(add 1 hexagon, so add 6 squares 
around it), this is not the case. One 
square can be pictured as overlap-
ping, so that only 5 squares are in fact 
added in each successive stage. 

The toothpicks illustration in 

A combination of an effective 
problem-solving process that 
focuses on fi gural reasoning 
and appropriately challenging 
geometric pattern tasks will enable 
mathematics teachers at all levels to 
promote functional understanding. 
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fi gure 9 presents a similar situation. 
Although a triangular shape is added 
in each successive stage, only 2 tooth-
picks are added to the stage, because 
a third toothpick would overlap with 
a toothpick already in place from the 
previous stage. 

What makes the geometric pat-
tern in fi gure 12 more complex than 
that in fi gure 7? The difference 
between these two patterns is only 
in how they begin, but this makes its 
function more diffi cult to derive. In 
fi gure 7, the pattern has three spokes 
in each stage; the number of squares 
in each spoke corresponds to the 
stage number (see the student work 
in fi g. 19). Thus, the functional re-
lationship can be represented by the 
equation T = 3n + 1. In fi gure 12, 
the number of squares in each spoke 
actually corresponds to 1 fewer than 
the stage number. This functional 
relationship can be represented by 
the equation T = 3(n – 1) + 1. Stu-
dents may have diffi culty generating 
this rule if they are not encouraged 
to focus on the growing pattern itself 
and its translation to a numerical 
pattern through the use of a three-
column table.

The geometric patterns in fi gures 
14 and 18 are more complex than 
the others because they represent 
nonlinear relationships. Although the 
pattern in fi gure 14 looks exceedingly 
complex, it is actually well within 
grasp for students who have had prior 
experience with geometric patterns, 
especially in classrooms in which fi g-
ural reasoning has been highlighted. 
There are multiple ways of seeing 
the pattern in fi gure 14 (see Smith, 
Silver, and Stein 2005). In fi gure 20, 
students present a summary report of 
their analysis of fi gure 14 with a table 
showing the pattern structure. In their 
summary, they highlight the compo-
nents related to how they analyzed 
the pattern. This pattern, like many 
others, can promote a classroom 

Fig. 19 Students’ summary report of their analysis of fi gure 7, using the strategy of 
three identical extensions and a single center (yellow) square.

Fig. 20 Students’ summary report of their analysis of fi gure 14, demonstrating their 
strategy of identifying a center n × n part, exterior parts, and two additional squares.
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discussion of equivalence of symbolic 
expressions and multiple answers.

The pattern in fi gure 18, however, 
does not lend itself to analysis using 
fi gural reasoning. Sasman, Olivier, 
and Linchevski (cited in Rivera 2007) 
distinguish between transparent and 
nontransparent geometric patterns. 
The other seventeen patterns are 
transparent patterns; the functional 
relationships can be obtained easily 
through fi gural reasoning. However, 
fi gure 18’s pattern is nontranspar-

ent, in that “something more needs 
to be done before students are able to 
see a possible function rule from the 
available cues” (Rivera 2007, p. 72). 
The squares to the left of the tallest 
column could be detached, rotated 
180 degrees, and fi t into the staircase 
to the right, thereby creating a square.

The patterns in fi gures 8, 15, and 
16 provide examples of how to add 
complexity to more simple patterns. 
The geometric pattern in fi gure 8
is identical to fi gure 1. However, by 

asking a more challenging question, 
“How many people could sit around 
the table in each stage?” it becomes a 
contextual perimeter problem, with a 
more complex functional relationship. 

Figure 16 brings this same pattern 
into three dimensions. The ques-
tion, “How many smiley face stickers 
does it take to cover the fi gure?” can 
promote a rich connection to surface 
area. Its functional relationship is well 
within reach of students who are en-
couraged to articulate their process of 
fi gural reasoning. Likewise, you may 
have noticed that the pattern in fi gure 
15 is a three-dimensional version of 
the pattern in fi gure 7. This three-
dimensional version allows for more 
complex questions involving volume 
and surface area. 

Table 4 summarizes possible solu-
tion equations for each of the eigh-
teen patterns presented. Of course, 
students could engage in any of these 
tasks using the framework discussed 
here; this table gives the reader ex-
plicit forms of pattern generalization 
(Friel et al. 2001, pp. 7-8), relating 
fi gure structures and stage numbers. 

A combination of an effective 
problem-solving process that focuses 
on fi gural reasoning and appropriately 
challenging geometric pattern tasks 
will enable mathematics teachers at all 
levels to promote functional under-
standing. Although the variety of 
considerations of how these tasks may 
be used is beyond the scope of this 
article, some factors for incorporat-
ing these tasks across grade levels are 
discussed. 

Using the FRaMeWoRK 
With instRUction 
The increasing emphasis on algebraic 
thinking across grades K–12 requires 
that attention be paid to the use of 
fi gural reasoning. When coupled with 
an analysis of geometric patterns, 
students are on the path to develop-
ing solid functional thinking. With 

Figure 
number Possible solution equations

1 Tiles: T = n

2 Tiles: T = 2n 

3 Tiles: T = n + 1

4 Tiles: T = n + 4

5 Triangles: T = 1
Trapezoids: T = n 
Squares: T = n 
Total pieces: T = 2n + 1

6 Hexagons: T = 1
Squares: T = 6n 
Total pieces: T = 6n + 1

7 Tiles: T = 3n + 1

8 Perimeter: T = 2n + 2

9 Toothpicks: T = 2n + 1

10 Center tiles: T = n2

Border tiles: T = 4n + 4
Total tiles: T = n2 + 4n + 4 

11 Hexagons: T = n 
Squares: T = 5n + 1
Total pieces: T = 6n + 1

12 Tiles: T = 3n – 2

13 Black tiles: T = 4n + 1
White tiles: T = 8n + 8
Total tiles: T = 12n + 9

14 Tiles: T = n2 + 2n + 2

15 Cubes: T = 3n + 1

16 Surface area-smiley faces: T = 4n + 2

17 Smiley faces: T = 3n + 1

18 Tiles: T = n2

table 4 Equation key
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this scenario in mind, it is possible 
to begin to think about the kinds of 
tasks that might be used at grade 3 
versus grade 8. Organizing a loose but 
reasoned trajectory of growing pattern 
tasks to be used across grades 2−8 
will give teachers and students many 
opportunities to explore functional 
thinking in visual settings. One way is 
to have students investigate “families” 
of related pattern tasks. 

For example, fi gure 8 is a count-
the-perimeter task (see Smith, Silver, 
and Stein 2005). What happens 
when students look at strings of 
triangles or pentagons or hexagons 
or other types of patterns composed 
of more than one kind of polygon? 
Another possibility is to align choices 
of pattern tasks that are organized 
in an instructional sequence and 
are used within and across multiple 
grade levels (Smith, Hillen, and 
Catania 2007). What alignment 
issues need to be addressed? How 
might a teacher in grade 8 build on 
the experiences from those in grade 
7? More explicitly, if this alignment 
process is addressed consistently at 
all grade levels, how would students’ 
functional thinking emerge and 
develop? The answer is possibly at a 
depth and in ways that we have yet 
to consider possible. 

Using geometric pattern tasks to 
explore functional relationships has its 
limitations. Stage numbers are limited 
to positive numbers, the functional 
relationships are not continuous, and 
the contexts are necessarily restricted. 
However, we believe that incorpo-
rating such tasks into mathematics 
classrooms offers a valuable way to 
promote fi gural reasoning and develop 
a rich conceptual understanding of 
functions. The framework for explor-
ing these tasks should provide a start-
ing point for further analysis of these 
patterns and the multiple ways that 
they can be used to promote func-
tional thinking.
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